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Abstract—In the era of big data and artificial intelligence,
data sharing is desirable for vigorous development of data-
driven intelligent services. Although data sharing is supported
to a certain extent by current mechanisms and technologies,
organizations especially with potential competitive relationships
might refuse to share their data. One reason is that data holders
worry that data sharing improves competitors’ competitiveness.
The other reason is that data sharing suffers huge privacy
security risk. To address these problems, in this paper, the concept
of competitiveness is introduced as a data sharing transaction
driving force to eliminate the competitiveness worry of data
holders while differential privacy is adopt to protect their privacy.
As there is an information asymmetry between data sharers and
data demanders, a contract theoretic approach is proposed to
motivate data holders to share data with privacy protection,
which is expected to achieve a target of win-win and data sharing
security. By designing optimal contracts, the data demander can
decide rationally how to pay the data holders given the privacy
parameter. Moreover, data holders can choose the contract
that maximize their utilities. Numerical results substantiate the
effectiveness of the the proposed scheme.

Keywords—Data sharing, incentive mechanism, competitive-
ness, privacy protection, contract theory

I. INTRODUCTION

With the rapid development of data processing technology,
data-driven services such as recommendation services, speech
recognition and image recognition emerge vigorously, which
changes the style of daily life. These intelligent services are
provided by organizations by processing a sufficient amount
of high quality data. However, not all the data-driven service
providers can possess the same wealth of data in the large
corporations, such as Google, Facebook, Microsoft and Ama-
zon [1]. Actually, sharing data among multiple organizations
is an efficient approach to address the data availability issue,
and improve significantly data-driven services. The sharing of
scientific data can advance the progress of scientific research,
and provide a redundant backup for valuable data set [2]. The
sharing of financial data can help detect fraud and other illegal
activities by searching links between transfers [3]. Data from
hospitals can help predict flu outbreaks, and then improve the
response to epidemics [1].

Although data sharing is highly desired for vigorous devel-
opment of data-driven services, organizations especially with
competitive relationships might refuse to share data [4]. One
reason is that data holders worry that data sharing improves
competitors’ competitiveness. With the help of data sharing,
competitors improve the user experience of their services based
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on the acquired data processing while data holders reduce
business due to the loss of data. This difficult situation hinders
data holders’ motivation of data sharing. For instance, data
sharing and collaboration is critical to the research for new
medicines [5]. However, medicine sectors are often driven
by profit and discovering the next super drug so that they
have no passion to share data [6]. The other reason is that
data sharing suffers huge privacy security risks [3]. When
data is disclosed or used in data-driven services with data
sharing, individual’s privacy will be inevitably compromised
[7], [8]. Therefore, the privacy threats posed by data sharing
are concerned increasingly.

In this sense, in order to motivate data sharing to improve
current intelligent services, incentive mechanisms are required
for organizations to eliminate the competitiveness worry and
guarantee data sharing security. Specially, we need to develop
mechanisms that ensure getting strictly better service for
organizations who provides data while protecting their privacy.
Although data sharing is supported by current mechanisms
and technologies, most of previous works are focused on
data sharing among participants with cooperative relationships.
How to motivate competitive organizations to share data is
largely ignored [9], [10]. Moreover, the privacy protection of
data sharing among competitive organizations is still a problem
to be addressed. Many current mechanisms are not credible
because the privacy protection is carried in the third party
rather than data sources [11]. Even if these third parties are
considered as trustful, there is still privacy disclosure risk.

Therefore, in the data sharing among competitive orga-
nizations, it is a challenge to eliminate the competitiveness
worry and guarantee privacy security. In this paper, we jointly
consider competitiveness motivation and privacy protection by
introducing the concept of competitiveness as a data sharing
transaction driving force and employing privacy preservation
at data holders with differential privacy. As the exact privacy
parameters is unknown for data demanders, a contract theoretic
approach is proposed to address the information asymmetry.
By designing optimal contracts, the data demander can decide
rationally how to pay the data holders given the privacy
parameter. Moreover, data holders can optimize their utilities
by choosing a best contract. Numerical results substantiate the
effectiveness of the the proposed scheme.

The rest of the paper is organized as follows. The system
model is presented in Section II. The contract-theoretic model
is formulated in Section III. The theoretic and discrete optimal
contract design are discussed in Section IV and Section V,
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Fig. 1. A data sharing network.

respectively. Simulation results are discussed in Section VI.
Finally, we conclude this study in Section VII.

II. MODEL DESCRIPTION

A. Competitiveness Model

In data sharing among competitive organizations, data hold-
ers worry that competitors acquire a amount of data and then
improve their competitiveness through technical progress and
even technology leapfrogging. As data holders can not benefit
from the data sharing, they are in a disadvantageous position in
commercial competition, reducing the passion of data sharing.
However, if data holders obtain the technical progress and
competitiveness in data sharing, there will be a possible win-
win result for data holders and data demanders. Therefore, as
defined in Definition 1, the concept of competitiveness is an
important incentive factor for data sharing.

Definition 1 (Competitiveness). Competitiveness is the ability
to improve the quality of services such as user experience,
which is usually obtained by processing data.

o  Competitiveness of a data set can be measured by a
factor v called competitive factor.

e A data set with high competitive factor brings a data
holder more profit.

In this paper, competitiveness is used as a transaction
driving force to motivate data sharing. In this sense, data
holders share their data to the data demander, and obtain
the ability of technical progress from the data demander, i.e.,
competitiveness expressed in terms of competitive factor. Thus,
data holders eliminate the competitiveness worry by obtaining
the competitiveness.

B. Differential Privacy

To provide the privacy security of data holders during
data sharing, differential privacy is conducted before sharing
the data [12]. Differential privacy is a strong and rigorous
standard for privacy protection. Some well-known software
systems such as Google Chrome [13] and Apple iOS [14]
have applied this new technology to protect users’ privacy.
Differential privacy guarantees that no third party can infer
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individual-level information with high confidence based on the
released results.

As a gold standard of privacy definition, differential privacy
also is a rigorous mathematic definition. Suppose that D and
D are neighboring databases, which are differing on at most
one record. M is a random function and P, is the any
output of M. For D and D', a privacy mechanism M gives
e-differential privacy if it satisfies

Pr[M (D) € Sy < exp(e) x Pr[M(D') € Sy,

where Syp; C Pyy. The privacy parameter € is the privacy
budget. The higher value of € corresponds to the lower privacy
protection. The privacy parameter is usually very small. In
the data sharing network as shown in Fig. 1, before sharing
the data to the data demander, data holders take e-differential
privacy to preserve their privacy, which provides a secure data
sharing mode.

C. System Model

Consider a data sharing network in Fig. 1. The data sharing
network consists of /N data holders and one data demander,
which have competitive relationships. On the requirement to
improve the quality of data-driven services, the data demander
collects data from /N data holders. Once handing over its
data, the data holder may suffer the loss of data control,
potential improvement of the data demander’s competitiveness
and a potential loss in privacy. To protect the privacy security,
data holders adopt differential privacy before sharing data. A
privacy parameter € € [, 2] is used to describe the protection
level of the privacy. According to differential privacy, a smaller
¢ means the data holder takes better privacy protection. The
privacy parameter is defined by the data holder, which is
unknown to the data demander. As the competitiveness is intro-
duced, when a data holder shares data to the data demander, it
will receive competitiveness as compensation for the data loss
from the data demander. In this data sharing network, each
data demander and data holder make decisions to maximize
their utilities.

From the perspective of the data demander, it collects data
from data holders to achieve service improvement. For the data
collected ¢, The gain from data ¢, G(q) is expressed as

G(q) = wlog(1 + q), (1

where w is a positive parameter meaning the weight of the
data to the data demander. Before sharing data, data holders
take privacy protection action by differential privacy. For
the collected data ¢ from the data holder with the privacy
parameter €, a small € may cause a decrease in data utility
because the small € means high privacy protection and less
details of the shared data. Once receiving the data g from the
data holder with the privacy parameter €, the data demander
should pay competitiveness to the data holder. Therefore, the
overall utility of the data demander by obtaining data from a
data holder with the privacy parameter £ can be defined as

Up = wlog (1 + aeq) — 7, 2)
where « is a positive parameter.
From the perspective of a data holder, it takes

e—differential privacy to protect privacy before sharing data
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q. Although the data holder suffers potential privacy loss, it
will receive the competitiveness as compensation for the loss
of data. Therefore, the utility to a data holder with privacy
parameter ¢ can be defined as
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u =y — ceq,
where c is a cost parameter.

In the data sharing network, the exact privacy parameters
is unknown to the data demander because the differential
privacy is taken privately by the data holders. In other words,
the privacy parameter ¢ is a random variable to the data
demander. In this paper, we assume that ¢ € [g,g] is drawn
independently and identically for different data holders. The
data demander only knows the probability density function
f(e) and cumulative distributed function F'(e). Therefore,
there is an information asymmetry between the data demander
and data holders.

III. CONTRACT-THEORETIC FORMULATION

To resolve the conflicts between the data demander and
data holders in the presence of asymmetric information, a
contract-theoretic approach is proposed in this section. Each
data holder’s privacy parameter ¢ is not observable to the
data demander. To achieve data sharing, the data demander
offers a menu of contracts {(v,¢)} to each data holder. After
receiving the menu of contracts, each data holder will choose
one contract (v, ¢) that maximizes its utility. Thus, according
to the contract accepted, the data holder provides data ¢ to the
date demander, and in return, the data demander should pay
competitiveness in terms of competitive factor v to the data
holder. According to the revelation principle [8], it is sufficient
for the data demander to consider the contracts that ensure each
data holder to truthfully choose the contract designed for its
privacy parameter. Therefore, the contract is designed as a pair
of functions {(v(£),q(g))}, where the contract (y(g), q(g)) is
designated for data holder with privacy parameter . In this
sense, upon choosing the contract (y(¢), g(¢)), the utility of a
data holder with privacy parameter € can be expressed as

uc(y(€), q(€)) = v(e) — ceqle). “)

To ensure that data holders will accept the contracts
designated for them rather than choosing other contracts or
refusing any contract, the contracts must be incentive feasible.
To be a feasible contract, {(y(¢),¢(¢))} needs to satisfy

both the incentive compatibility constraints and the individual
rationality constraints.

Definition 2 (Incentive Compatibility (IC)). A menu of con-
tracts {(v(£),q(e)),e € [e,E|} satisfies IC if the data hold-
er with privacy parameter € prefers to accept the contract
(v(e),q(e)) rather than other contracts, i.e.,

u:(v(€), q(e)) > uc(v(8),q(é)),ve,é € [g,8]. (D)

Definition 3 (Individual Rationality (IR)). A menu of contracts
{(v(g),q(e)), e € [, 2|} satisfies IR if each data holder has a
non-negative utility by accepting the contract for its privacy
parameter ¢, i.e.,

u:(v(e),q(e)) > 0,Ve € [¢,2]. (6)
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In the contract theoretic data sharing model, since the data
demander offers contracts to data holders without knowing
the data holders’ privacy parameters, the utility of the data
demander is evaluated in expected terms. The data demander’s
objective is to find an optimal menu of contracts which
maximizes the expected utility. Therefore, the data demander’s
objective can be formulated as

anAﬁ/Eubaﬂa,v@»f@ﬁk

e @)
subject to (5) and (6),
where the function Up(q(¢),v(g)) is defined as
Up(q(e),7(¢)) = wlog (1 + agq(e)) —=(e)- B

IV. OPTIMAL CONTRACT DESIGN
A. Simplifying the Optimization Problem

Proposition 1. A menu of contracts {(v(¢),q(¢)),e € [g, €|}
satisfies IC constraint if and only if

q(e) <0, ©
7' (e) — ceq (¢) = 0, (10)
where q (g) = d(il(;) and ~'(g) = df;(;).

Proof: According to the IC definition in (5), for any ¢, € €
[, €], we have

(e) = ceqle) = 7(€) — ceq(é), (11)
V(&) = c£q(&) = v(e) — cq(e)- (12)

Adding the above two inequalities, we have
(€ —&)c(a(é) —q(e)) = 0. (13)

As ¢ > 0, the above inequality means that g(¢) is a non-
increasing function of e. Therefore, it can be concluded that

g (e) 0. (14)

Given ¢, (11) implies that the utility function of the data
holder with privacy parameter e, u.(7y(€),q(¢)) v(é) —
ceq(€) reaches its maximum at € = e. Therefore, we have

u-(1(€),q(€))|  _dyle) __ dale)
0é de de

=0. (15)

é=¢

Next, it will be proved that conditions in (9) and (10) are
also sufficient conditions for the IC constraint. According to
(10) , we have

MO f#mm=m@—m@—fmmw

é é
(16)
After some manipulations of (16), according to (9), we have
€
v(e) — ceq(e) = 7(€) — ecq(é) + / [cq(é) — cq(7)]dT
> W(é) - €CQ(‘§)’

which follows the definition of IC constraint.

a7)
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Proposition 2. Suppose a menu of contracts {(v(¢), q(e)),e €
[e,E]} satisfies the IC constraint. Then, the menu of contracts
satisfies the IR constraint if and only if

(@) — c2q(2) > 0. (18)

Proof: Since the menu of contracts satisfies the IC con-
straint, according to (10), we have

o du €),q(e / /
u, = MO _ o (0) — q(e) — eeq (6) = —eq(e).
(19)
Since ¢ > 0 and ¢(¢) > 0, we have —cq(e) < 0, which
indicates that u.(7(¢), ¢(¢)) is a non-increasing function of ¢.
Therefore, € is the privacy parameter minimizing u(¢), i.e.,

ge ren[irzl us(v(€),q(e)). (20)

In this sense, the IR constraint is thus equivalent to
uz(7(€),q(€)) >0, ie., v(€) — ceq(g) > 0. [ |
Theorem 1. For the optimal solution, the IR constraint for the
privacy parameter € is binding at the optimum, i.e.,

2D

—
uz = 0.

Proof: Suppose uZ > 0, then the data demander could
reduce uf by a small amount while keeping ¢*(¢) unchanged.
As a result, the data demander’s utility is increased, which
contradicts with the optimality of uZ. [ ]

Based on the simplifications, the optimization problem of
the data demander is rewritten as

max / Un(a(e). () f(e)de

= max /E (w log (1 4 aeq(e)) — ue(v(e),q(e)) (22)

— ecq(s)) f(e)de
subject to (9), (10) and (18).

B. Optimal Control-based Approach

The Pontryagin’s maximum principle is used for solving
the optimization problem of the data demander in (22) to
obtain the optimal data function ¢*(¢). Let ¢(¢) be the control
variable, u.(y(¢),q(¢)) be the control variable and ¢ be the
time variable. Let x(¢) = u-(v(€), ¢(¢)). The Hamiltonian of
the problem is expressed as

H(x(e), q(¢), A(e), )
— (wlog (1 + azq(e)) - a(e) — =cq(e) ) £(2) = Ale)ea(e):
(23)

According to the Pontryagin minimum principle, the neces-
sary conditions of the optimal control and states are as follows.

‘o OH(X(e),47(e), A" (e),€)

@ (e) Y0 =fle)g’ ). @4
N(e) = —aH(X*(g)éf(g)’ YEE . es)
H(x"(e),47(e), A"(e),€) = H(x7(e), q(e), A™(¢),€)- (20)
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Algorithm 1 Optimal Contract Implementation.

1. Optimal Contract Design:
The data demander calculates the optimal contract
{v*(€),¢"(e)} according to (29) and (31).

2. Contract Publish:
The data demander publishs the contract {7y*(¢), ¢*(¢)}
to all data holders.

3. Contract Selection:
Each data holder decides whether to accept the contract
or not according to its own utility.

4. Data Sharing:
Once accepting the contract, the data holder shares the
data and receives the competitiveness according to the
contract.

From above conditions, we have

X(g) = F(e). (27)

As having the A\*(g), the optimal data function can be
derived via taking the first-order derivative of Hamiltonian to
q(g). We get

OH(x"(2),4(e), A" (2),) _ wae
0q(e) =) (1 + agq(e) 86) (28)
—cF(e)=0.
From (28), we have the optimal ¢*(¢) as
1
0 (e) = (29)

T ectcF(e)/f(e)  as

With the optimal data function ¢*(¢), we can obtain the
optimal utility function of data holders u}(vy(¢),¢q(¢)) and
competitiveness function v*(g) according to (19) and (4) as

w6E).ae) = [

€

€

—cq*(7)dT, (30)

g

v () = ceq(e) +/ —cq*(7)dr.

>

(€1

C. Optimal Contract Implementation

According to the proposed mechanism, the procedure of
optimal contract implementation is as shown in Algorithm 1.

V. DISCRETE OPTIMAL CONTRACT DESIGN

In practice, it is difficult for the data demander to get
the distribution of the privacy parameter. In this section, by
making the privacy parameter discrete, we try to design more
practical optimal contracts. We quantize the set of privacy
parameters © = [g,&] with a factor K such that the privacy
parameters are a discrete set of K privacy parameters, i.e.,
© = {01,02,---,0k}. Without loss of generality, it can
be assumed that §; < 02 < --- < J0x. The quantization
process is considered to be uniform with equidistant values,
E—¢

7

If K is large enough, the privacy parameters of data holders
are almost equal to a J; in ©. The objective of the data
demander is to maximize its expected utility by designing an

ie., oy =g+ (k—1)o where o =
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incentive compatible and individually rational optimal contract
(v(0k), q(x)) (for simplicity, we will now refer it as (vx, qx))
Vér € O. Therefore, the objective function in (7) can be
rewritten in the discrete form as

maxi (w log (1 + a5k¢1k) - Vk)
k=1

s.t.

(32)
Vi — COpqi > 7Yj — COkqj, Vo, 05 € O.

Vi — cOrqr > 0,0, € ©.
Theorem 2. For the optimal solution, the individual rationality

constraint for the highest privacy parameter is binding, i.e.,
YK — O qr = 0.

Proof: According to Theorem 1, for the optimal solution,
the IR constraint for the privacy parameter € is binding at the
optimum. In the discrete form, we have v — cdxqr = 0. B

Theorem 3. For the optimal solution, g1 > q2 > -+ > qx >
0 and all the upward adjacent ICs are binding, i.e.,

Tk — COrQr = Yet1 — COrqry1,VE < K — 1. (33)

Proof: According to Proposition 1, the data function is a
non-increasing function of privacy parameter, we have

G1>2q>--2>qr > 0. 34)

1) Proof of sufficiency: Suppose the adjacent upward ICs
are binding, then we can rewrite (33) as follows
(35)

For some j such that j > k, then using (34) and (35), we have

Ve — Vi1 = Ok(qe — Qroy1), Ve < K —1

Ye =V = Ok — Qry1) + Orr1(qrs1 — qrt2)
+otedia(gi1 - )
> cOr(qr — Q1) + COk(qrt1 — Qrv2) + -
+ cor(gj-1 — q5) = cor(ar — q;)-
Then, for some j such that j < k, then using (34) and (35),
similarly we have

(36)

Y — ke < dk(q5 — qr)- (37N
Combining (36) and (37), we have the IC constraint expression

Ve — COrqr > v — cOkqj, Yk # j. (38)

Hence all the ICs are satisfied when adjacent upward ICs are
binding.

2) Proof of necessity: Suppose there are one or more
upward adjacent ICs, such as J;, which are not binding for
optimal solutions. With IR for ;4 1, we get

T — Okl > Vht1 — COkQlt1 > Vh+1 — COky1qkr1 > 0. (39)

If we reduce all v;, Vj < k with equal data, it will no change
for any IRs and the existing relation between adjacent upward
ICs. We iteratively repeat the process (from the highest privacy
parameter for which adjacent upward IC is inactive) till all the
upward ICs are binding. During this process, we have only
reduced the competitiveness to bind all the upward adjacent
ICs. This in turn satisfies all the other ICs from the sufficiency
conditions. Hence, we find a better contract and the original
contract cannot be optimal, which is a contradiction. [ |
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Thus, the function in (32) can be expressed as

K
maxz (w log (1 + Od;k%) - ’Yk) ) (40)
k=1
where
Vi1 + Ok(qe — qry1), VES K —1,
T (41)
COK (K, k=K.

Taking the derivative of the optimization function to g and
equating it to zero, we have the optimal data function

_ w _ 1
o kC(;k — (k‘ — 1)C5k_1

The optimal competitiveness function can be correspondingly
obtained by combining (41) and (42).

(42)

qk 07516'

VI. NUMERICAL RESULTS AND DISCUSSIONS

In this section, numerical simulations are conducted to
study the performance of the proposed contract-based data
sharing incentive mechanism. For ease of illustration, we
consider a simple data sharing network with one data demander
and 5 data holders. We assume the privacy parameters of
data holders are distributed within [0.01, 0.21] uniformly. Data
weight w = 100. The data processing complexity factor o = 2
and the data sharing cost ¢ = 1.

The data function performance of the theoretic optimal
contract is presented in Fig. 2, which shows that the data
function in optimal contract decreases with the increase of the
privacy parameter. The reason is that a large privacy parameter
value means a large possibility of privacy disclosure according
to the definition of differential privacy so that the data holders
are reluctant to share data, resulting in the decrease of the data
in optimal contract.

The comparison of the discrete optimal contract function
with the theoretic results is presented in Fig. 3 and Fig. 4. Fig.
3 shows the performance of the discrete optimal data function,
where the data function in the discrete optimal contract design
is close to theoretic results. For more clear expression, the
details of the comparison are drawn in Fig. 3(a) and Fig. 3(b).
As K increases, the discrete data function is getting closer
to theoretic results. Moreover, the two curves almost coincide
when K = 50, which verifies that the data function in discrete
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optimal contract design is a good approximation with a large
K. The performance of the discrete optimal competitiveness
function is depicted in Fig. 4, which shows that the competi-
tiveness function in the discrete optimal contract design is close
to theoretic results. Therefore, the discrete optimal contract
design approximates the theoretic results well.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, an incentive mechanism based on contract
theory has been proposed to address the competitiveness worry
problem and privacy security problem in data sharing among
organizations with potential competitive relationships. By in-
troducing competitiveness into data sharing as a motivation
factor, data demanders and data holders are encouraged to
participate in the data sharing. Moreover, privacy is preserved
by employing differential privacy. As there is an information
asymmetry among data sharing participants, the incentive
mechanism is formulated as a contract theoretic approach
to achieve a target of win-win and data sharing security.
By designing an optimal contract, data holders and the data
demander can maximize their utilities. Numerical results show
the effectiveness of the proposed scheme.
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